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A B S T R A C T

Continuous Liquid Interface Production (CLIP), a variant of vat photopolymerization additive manufacturing,
can achieve build speeds an order of magnitude faster than conventional layer-by-layer stereolithography pro-
cess. However, identification of the proper continuous printing speed remains a grand challenge in the process
planning. To successfully print a part continuously, the printing speed needs to be carefully adjusted and cali-
brated for the given geometry. In this paper, we investigate machine learning techniques for modeling and
predicting the proper printing speed in the CLIP process. The synthetic dataset is generated by physics-based
simulations. An experimental dataset is constructed for training the machine learning models to find the ap-
propriate speed range and the optimum speed. Conventional machine learning techniques including Decision
Tree, Naïve Bayes, K Nearest Neighbors, and Support Vector Machine (SVM), ensemble methods including
Random Forest, Gradient Boosting, and Adaboosting, and the deep learning approach Siamese Network are
tested and compared. Experimental results validate the effectiveness of these machine learning models and show
that the Siamese Network model gives the highest accuracy.

1. Introduction

CLIP is a vat photopolymerization based additive manufacturing
technology that does not involve discrete layers because the curing part
is drawn out of the resin without interruption [1,2], as illustrated in
Fig. 1. It is also known as video projection stereolithography and orders
of magnitude faster than the layer-by-layer photopolymerization, which
has been demonstrated in Tumbleston et al. work [1] and Chen et al
work [2]. A key factor to the success of continuous printing is a proper
continuous elevation speed V as shown in Fig.1, which is, however,
challenging to identify. An over fast speed will result in the failure of
bonding newly cured material to the part. On the other hand, an over
slow speed tends to lead to the adhesion between the part and the
oxygen permeable window. Current approaches to searching for the
proper continuous elevation speed mainly rely on empirical knowledge
gained from trial and error experiments. Since the working continuous
elevation speed varies with the printing geometry, there is an urgent
need to develop a systematic and fundamental approach to replace the
current trail-error method for identifying the proper speed. To address
this challenge, this work focuses on investigating machine learning

techniques for the continuous printing speed modeling, selection, and
optimization.

Machine learning has been proved effective in various manu-
facturing systems. In [3], advances and trends in cyber-physical man-
ufacturing systems have been discussed. It reviews applications of big
data analytics in manufacturing systems. An overview of additive
manufacturing informatics has been provided in [4], which emphasizes
the importance of integrating data mining and additive manufacturing
systems. The advantages, applications, and technology progress of AM,
AM data and big data analytics for AM are presented in [5]. The study
of data mining in selective laser melting (SLM) sensor data is conducted
in [6]. Data-driven surrogate models are proposed in [7] to identify
important variables and find appropriate process parameters in SLM. In
[8], a data-enabled interferometric curing monitoring and measuring
model is proposed to estimate the height profile of cured parts and
realize the desired real-time measurement for polymer additive manu-
facturing processes. A random forests (RFs)-based prognostic method
for tool wear prediction was proposed in [9] for manufacturing systems.
In [10], machine learning was used to classify additive manufactured
(AM) parts contingent on the severity of their dimensional variation
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from laser-scanned coordinate measurements. In [11], two predictive
models were developed to predict droplet velocity and volume using
ensemble learning. In powder-bed AM process in [12], machine
learning was employed to determine the spreader parameters. Despite
those advances of machine learning in manufacturing, its application in
CLIP has not been investigated yet. In this paper, we aim to investigate
various machine learning techniques for printing speed selection and
optimization in CLIP. The contributions of this paper include: 1. This
paper represents the first study of applying machine learning in pro-
jection stereolithography and continuous printing for process modeling.
2. This study established a new modeling method for identifying the
proper working speed range and the optimum speed in continuous
printing, by combining physical modeling and machine learning ap-
proaches. 3. This work investigated the effectiveness of Siamese net-
work on small dataset, which is common in manufacturing systems and
challenging for machine learning. The Siamese network can also be
extended to other scenarios in manufacturing systems. Due to the large
design space of parameters for continuous printing, it is critical to first
identify a reasonable speed range and then identify the optimum speed.
Previous studies [13–15] have shown that the separation force incurred
in the process is closely related to the manufacturing speed. In addition,
the separation force is a strong indicator and a readily measurable
signal of whether the printing is successful. Therefore, the magnitude of
separation force in a certain printing process can be used to evaluate
the current condition or predict the outcome of the process. To take
advantage of this relationship between separation force and the
printing process, a theoretical model of separation force has been uti-
lized as a heuristic for determining the initial proper speed range. A
synthetic dataset is generated by enumerating the combinations of
various levels for each factor in the theoretical model. Experiment data
is collected from our established continuous printing setup. The idea
and workflow of this paper is illustrated in Fig. 2.

As illustrated in Fig. 2, when there is no experimental dataset
available, a synthetic dataset is first generated by using a small subset of
the original design of experimental (DOE) table S. Machine learning
models are trained and tested on the synthetic dataset. The most ef-
fective model is selected and implemented for predicting the outcome
(success or failure) of all the designed experiments in S. According to
the predicted results, the designs in the original DOE will be screened.
For instance, priority will be given to the DOEs which are predicted as
success cases. This procedure reduces the effort of trial and error when
initiating experiments without prior knowledge of experimental data. A
dynamically growing two-class (success or failure) experimental dataset
is generated as new experiments are performed. As new experimental
results are added to the dataset, machine learning models will be
trained on experimental dataset instead of the synthetic dataset. This is
because experimental data will better capture the pattern of continuous
printing. The most effective machine learning model will be used to
predict whether a speed range is working by discretizing the range and

predicting the outcome at each specific speed point. Given the dataset
which contains experimental results from proper working speed ranges,
surface quality will be further studied. The successfully printed parts
will be graded by four levels, level 0, 1, 2 and 3, based on the surface
quality. The experimental dataset will be then upgraded to a multiclass
dataset. Machine learning models will be trained and tested on this
newly created dataset. The most effective model will be used to predict
the surface quality of the printed parts for future experiments. In this
way, future experiments can be carried out selectively and the optimum
printing speed can be identified efficiently based on the predictions.
The experimental results will be added to the dynamically growing
dataset.

The proposed workflow concerns the situations of with and without
experimental dataset. The proposed machine learning models aim to
avoiding trial and error efforts and improving the efficiency of identi-
fying proper working speed ranges and the optimum speed for con-
tinuous printing.

The organization of this paper is as follows: Section 2 presents how
the synthetic and experimental datasets are constructed and introduces
the machine learning models tested in this study. Section 3 demon-
strates the constructed machine learning models and discusses the
corresponding modeling results. Conclusions are given in Section 4.

2. Theoretical modelling, data collection and model introduction

2.1. Theoretical modelling of the separation process

The separation of the newly cured layer from the constrained sur-
face together with the liquid filling induced by this separation process is
a significant procedure of the constrained surface projection SL tech-
nique. The force incurred in this separation process is a strong indicator
for the success of the printing, as illustrated in Eq. (1), where Fseparation
denotes the maximum separation force for printing a certain layer, F0
and F1 are the lower bound and upper bound of the reasonable se-
paration force range for printing that layer, respectively. An over large
separation force usually implies the adhesion between the printed part
and the constrained surface. While an over small separation force
commonly relates to the failure of bonding newly cured material to the
printed part.

F F F success
F F F fail

[ , ],
[ , ],

separation

separation

0 1

0 1 (1)

Our previous study has modelled the separation force for smooth
constrained surface and pressure drop for textured constrained surface
by concerning the separation mechanism and liquid filling effects
around the separation interface, as shown in the following equations
[13,16,17]:
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where V is the separation speed, r is a variable ranging from 0 to R,
which is the radius of the part cross section, n denotes the number of
grooves of the micro texture, µ represents the viscosity of the resin, w
and d are the width and depth of the grooves of the micro texture. h
denotes the height of the initial gap, which is the oxygen inhibition
layer thickness.

Two constrained surfaces, island surface (IS) and textured surface
(TS) are investigated for continuous printing. The surface of IS is
smooth, so Eq. (2) is used for calculating the separation force. TS im-
plements a microtextured surface and Eq. (3) is applied. By adding
terms compensating factors such as the plasticity and deformation of
constrained surface, platform initial position calibration, and random

Fig. 1. Illustration of continuous printing with oxygen permeable window.
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Fig. 2. Workflow of the proposed approaches.

Table 1
Various levels of different process parameters.

Process parameters Levels

Resin viscosity (Pa · s) 0.09 0.12 0.14
Cross section size js used for synthetic dataset construction (mm2) 3.1 12.6 50.3
Manufacturing velocity (mm/s) 0.025 0.038 0.05
PDMS thickness (mm) 1 2 4
Constrained surface type Smooth Textured Island
Duration of frame(s) 0.5 1 1.5
Video projection time (min) 15 20 30
Groove width (μm) 100
Groove depth (μm) 100
Cross section size jb used for separation force boundary construction (mm2) 3.1 7.1 12.6 19.6 28.3 38.5 50.3 63.6 78.5
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noises to above equations, the calibrated equation for separation force
for IC and TC are modified as follows:
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= +

F k R k

F k dr k

IC
V

h

TC
R dp

dr

1
3 µ

2
4

2

3 0 4

3

(4)

where k1 is calibrated to be 0.027 and k3 0.03, mainly for compensating
the PDMS deformation, k2 and k4 are randomly generated noises with
an absolute value of less than 0.02 N according to empirical experience.

2.2. Synthetic and experimental dataset

2.2.1. Synthetic data generation
Based on the theoretical modelling of the separation force, simula-

tion has been performed by considering nine process parameters, in-
cluding resin viscosity, cross section size of the part, manufacturing
velocity, PDMS thickness, constrained surface type, duration of frame,
video projection time, micro texture groove width, micro texture
groove depth etc. Each of these process parameters has several levels,
which represent some representative parameter values in the real
manufacturing processes. An example of the parameters with their
corresponding values are given in Table 1.

Combinations of different levels for these parameters will result in
different sets of experiments. The corresponding separation force is
calculated using Eq. (4). In total, 6000 instances are generated in the
simulated dataset. Threshold F0 j and F1 j, which are the proper lower
bound and upper bound of empirical separation force, are set to gen-
erate the corresponding labels for each piece of data. In F0 j and F1 j, j is
the index for distinguishing parts of different sizes. i is the instance
index and yj,i is used as the label for each piece of data, with a value of 1
means the part with a size in j level is successfully printed and 0 denotes
a failure:
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If the calculated separation force is larger than the upper bound
threshold F0 j or smaller than the lower bound threshold F1 j, then the
printing part is failed, and a 0 label will be assigned to the data. The
number of instances of 0 label and 1 label are close in the simulated
dataset. Therefore, the dataset is balanced, and no oversampling and
under-sampling is needed. Machine learning techniques are trained on
this simulation generated dataset and the learned models provide some
prior knowledge before designed experiments are carried out. To test
the effectiveness of the machine learning models trained on this syn-
thetic dataset, the learned models are evaluated on experimental ob-
tained data.

2.2.2. Experimental data collection
Experiments are carried out to test different speeds for continuous

printing. The schematic of the setup is given in Fig. 3. The image of the

continuous projection SL system is shown in Fig. 4. A precision position
stage from Velmex is used as the Z stage. A process control testbed has
been developed using C++ language, as shown in Fig. 4(a). It in-
tegrates the geometry slicing, image projection, and motion controlling.
DLP® LightCrafter™ 4500 from Texas Instrument is used as the image
projection unit in this setup, as shown in Fig. 4(b). A KMotion control
board from DYNOMOTION is implemented to control the Z stage mo-
tion, light projection and synchronized the motion and projection. An
online force monitoring unit has been developed in Matlab/Simulink
for measuring the separation force. A load cell (LRM 200 from Futek) is
utilized to collect the force signals, together with a data acquisition
(DAQ) device (USB 6008 from National Instruments). The online force
monitoring system reads and processes data from the load cell, and
records separation force measured in real time during the continuous
manufacturing processes. Two commercial photopolymers, Perfac-
toryTM LS600M from EnvisionTEC Inc. and G+ (green) from Make-
Juice Labs are used as the materials in the experiments.

Parameters described in the mathematical model, which are readily
accessible through measurements, are selected as the variables in the
experiments and the other conditions are fixed. For simplicity, cylinders
of different diameters and heights are printed. Each set of process
parameters and the corresponding outcomes are recorded and sum-
marized to generate an experimental dataset. The label is 1 if the part is
successfully printed (without consideration of the surface roughness)
and 0 otherwise. An initial experimental dataset of 180 instances is
collected. Machine learning algorithms are trained and tested on this
experimentally obtained dataset to find the proper manufacturing speed
for different sets of process parameters. The collected experimental
dataset is balanced with the same number of successful and failed prints
(positive and negative labels). Fig. 5 gives an example of samples
continuously printed with various speed.

2.3. Machine learning models

To the best of authors’ knowledge, there is no investigation on the
feasibility of process planning and optimization for continuous printing
using machine learning models. To close this knowledge gap, the most
representative machine learning models in conventional and ensemble
approaches are explored in this paper. Most of deep learning ap-
proaches require a large amount of data for training, hence cannot be
applied in manufacturing process due to the small dataset. However,
one state-of-the-art deep learning approach, Siamese network, which is
conventionally used for signature verification, has been proved work
well with small amount of data. However, its effectiveness in manu-
facturing process planning and optimization has never been in-
vestigated. Thus, in addition to the conventional and ensemble ap-
proaches, a customized Siamese network deep learning approach is also
investigated in this study. The detailed configurations of conventional
models, ensemble methods, and the Siamese network are elaborated in
the following sections.

2.3.1. Conventional techniques
To classify the simulated data, conventional approaches, including

K Nearest Neighbours (KNN), Support Vector Machine (SVM), Decision
Tree, Logistic Regression, Quadratic Discriminant Analysis (QDA),
Gaussian Processes (GP), NaiveBayes and Neural Network are im-
plemented first with scikit-learn using Python. KNN implements 5-
nearest neighbours vote and uniform weights are used for all points in
each neighbourhood. The implementation of SVM is based on libsvm,
commonly used radial basis function is selected as kernel function and
all classes are supposed to have weight one. The split criterion for de-
cision tree is Gini impurity and all classes are equally weighted to be
one. The regularization utilized in logistic regression is l2 penalty,
which adds “squared magnitude” of coefficient as penalty term to the
loss function, and the tolerance for stopping criteria is 1e-4. ‘Liblinear’
algorithm is applied in the optimization problem. QuadraticFig. 3. Schematic of the experiment setup.
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Discriminant Analysis (QDA) is generated by fitting class conditional
densities to the data and using Bayes’ rule. Gaussian process classifi-
cation (GPC) is based on Laplace approximation, in which the
‘fmin_l_bfgs_b’ algorithm from scipy.optimize is used as the optimizer.
Naïve Bayes is implemented using the Gaussian Naive Bayes algorithm
and the likelihood of the features is assumed to be Gaussian. The neural
network model is implemented using multi-layer perceptron classifier.

2.3.2. Ensemble methods
The goal of ensemble methods is to combine the predictions of

several base estimators built with a given learning algorithm to improve
the generalizability and robustness over a single estimator. This study
implements a typical averaging approach, Random Forests, and two
boosting methods, Ada Boost and Gradient Tree Boosting [18]. Random
Forest is implemented with 25 trees. The split criterion for each tree is
Gini impurity and all classes are equally weighted to be one. The base
estimator for Ada Boost is decision tree. The maximum number of es-
timators is 50. For gradient boosting, ‘deviance’ is used as the loss
function, the learning rate is 0.1 and the number of boosting stages to
perform is 100.

2.3.3. Siamese network
Deep neural networks are currently very popular in machine

learning community because they can have arbitrarily large number of
trainable parameters and usually achieve satisfactory results [19].

However, it requires a large amount of data to train the parameters,
which is sometimes not available for manufacturing systems. This be-
comes more serious when it comes to collecting data obtained from
relatively time consuming and expensive experiments. “Siamese”
neural network, which was introduced by LeCun [20], only requires
just one training example of each interested class. This network can still
be trained with many data points, as long as they are in the similar
domain to other training data points. Siamese Network was first de-
veloped for signature verification written on pen-input tablet. It consists
of two identical sub-networks with shared weights jointed at their
outputs, as illustrated in Fig. 6. Given a pair of signature images, these
two sub-networks extract features from one image from the pair and
pass the learned information through a contrastive loss function to
measure their distance. The contrastive loss can capture the detailed
difference between two inputs, and the loss function can be described as
follows [21]:

+Y D Y max m D(1 ) 1
2

( ) ( ) 1
2

{ (0, )}w w
2 2

(5)

Y=0 if the pair of images are similar, and Y=1 if they are dis-
similar. The parameterized Euclidean distance function between these
two images Dw is defined as:

=D X X G X G X( , ) ( ) ( )w W W1 2 1 2 (6)

where X X,1 2 are a pair of image instances and GW is the output of each
individual neural network.

Intuitively, Siamese Network trained two identical neural networks
using pairs of signature images, extracted feature vectors and stored the
learned weights. At test time, the distance between a test signature and
a known signature is calculated. Similar signatures are accepted, and
forgeries are rejected.

The sub-network for Siamese Network in above signature verifica-
tion situation is a time delay neural network. In [21], convolutional
neural networks are used as sub-networks of Siamese Network for di-
mensionality reduction by learning an invariant mapping. A variation
of deep Siamese Networks is proposed in [22]. It consists of a sequence
of convolutional layers, applies ReLU activation functions and imposes
a regularized cross-entropy objective to the binary classifier for one-
shot image recognition. In [23], 3-layer MLP (Multilayer Perceptron) is
used as the sub-network. Tanh is the activation function and the loss
function is modified to be Triangular Similarity Metric Learning (TSML)

Fig. 4. Continuous printing experiment setup.

Fig. 5. Cylinder samples continuously printed under different speed (a) General
Siamese Network. (b) Subnetwork of a Siamese Network for continuous
printing.
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objective function for dimensionality reduction and face identification.
To our best knowledge, all existing applications of Siamese Networks
are related to image classifications. Since Siamese Network works well
on small dataset which matches the typical size of our experimental
collected dataset, a customized Siamese Network is created according
to the characteristics of our dataset. To implement our own Siamese
Network, base networks of 4 MLP with dropout rate 0.1 are created and
ReLU is selected as the activation function after comparing it with tanh
and sigmoid. Various sets of process parameters are fed into the input
layer and their corresponding outcomes are collected in the output
layer in the form of predicted labels. There are 32 neurons in all hidden
layers except the first and last ones, which have 8 neurons. After out-
performing Adagrad and RMSprop, Stochastic gradient descent with a
learning rate of 0.00035 is used as the optimizer. The network is in-
itialized with 0 mean and 0.05 standard deviation.

3. Results and discussions

The problems of identifying the proper working speed range and the
optimum printing speed are converted to classification tasks in this
study. The input to the machine learning models is a vector of process
parameters and the output is the prediction of whether the printing
outcome is success for the problem of identifying the proper working
speed range. For the problem of identifying the optimum printing
speed, the same input is used while the output is the predicted surface
quality level. If the model prediction agrees with the real manu-
facturing outcome, it represents the model is accurate. The evaluation
metric in this study is accuracy, which is defined as the ratio of the

amount of correct classifications to the total amount of classifications.
The training accuracy is the accuracy of a model on examples it was
constructed on (training dataset). The testing accuracy is the accuracy
of a model on examples it has not seen (testing dataset).

3.1. Evaluation of models trained using synthetic data

Theoretical modelling generated synthetic data can be useful when
initiating a new set of experiments without any prior experimental data.
The trained machine learning models on synthetic data can be used to
give relatively simple while constructive predictions on designed ex-
periments. To evaluate the performance of these models, experimental
data is used for testing.

Fig. 6. Diagram of Siamese Network.

Table 2
Results of conventional techniques trained on synthetic da-
taset.

Models Testing accuracy

Nearest Neighbours 0.53
QDA 0.53
Gaussian Process 0.53
Logistic Regression 0.53
NaiveBayes 0.53
Decision Tree 0.52
SVM 0.51
NeuralNet 0.50
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3.1.1. Evaluation of conventional techniques
Conventional machine learning models described in the section

above are trained using the synthetic dataset. All the parameters such as
learning rate, momentum, and batch size, etc., adopt the classifiers’
default value. The results are shown in Table 2. Although the accuracy
of these models on training set is high, their performance on testing
dataset is relatively low. This cannot be explained by overfitting be-
cause no overfitting problem has been identified when training the
models. The following causes may lead to the low testing accuracy: 1.
The limitation of only using separation force as the evaluation metric of
whether printing is successful or not; 2. The deficiency of extending the
generalized separation force model developed for layer-by-layer
printing to continuous printing; 3. The simulation data and experi-
mental data are drawn from different distributions.

3.1.2. Evaluation of ensemble methods
Similar problems happen to the ensemble methods. The testing ac-

curacy on experimental data are listed in Table 3. The Ada boost
method outperforms other ensemble methods on the experimental da-
taset with an accuracy of 55.8%.

3.1.3. Evaluation of siamese network
Although Siamese Network also suffers from the aforementioned

problems, the average training accuracy of our Siamese Network on the
synthetic dataset is 84.24 and the average testing accuracy on experi-
mental dataset is 64.29, which outperforms all conventional ap-
proaches and ensemble methods mentioned above. Therefore, Siamese
Network is relatively reliable for providing basic experimental guidance
when only synthetic dataset is available, thus it is more suitable for
designing and initializing experiments.

3.1.4. Overall comparison of models trained using synthetic dataset
The performance of best conventional K Nearest Neighbors model

and Ada Boost model, which represent the highest accuracy of con-
ventional models and ensemble models trained on synthetic dataset, is
compared with that of Siamese Network. Results are plotted in Fig. 7. It

is apparent that Siamese Network can extract more information from
and make better use of the synthetic dataset. This is mainly because of
the contrastive loss used in Siamese Network, which can better capture
the discrepancy between data from distinct classes. Therefore, Siamese
Network can provide more prior knowledge when only the synthetic
dataset is available.

3.2. Evaluation of models trained using experimental data

3.2.1. Evaluation of conventional techniques
Similar to the cases using synthetic dataset, conventional ap-

proaches including K Nearest Neighbours (KNN), Support Vector
Machine (SVM), Decision Tree, Logistic Regression, Quadratic
Discriminant Analysis (QDA), Gaussian Processes (GP), Naïve Bayes,
and Neural Network are implemented with scikit-learn using Python.
All the parameter settings are set to obtain the models’ best perfor-
mance. To avoid overfitting, 10-fold stratified cross validation is ap-
plied to all the classifiers. The average accuracy of conventional models
on testing data is shown in Table 4. It can be seen that K Nearest
Neighbors works the best among all the conventional techniques with a
testing accuracy of 85.87% and Gaussian Process also works well with a
testing accuracy of 85.29%.

The overall performance of all conventional techniques on the
testing dataset is shown in Fig. 8. The error bars depict the mean and
variation of training and testing accuracy for each model on all the 10
folds of data. The blue bars show the training accuracy and the green
bar denotes the testing accuracy. On the x axis, Neural N., Gaussian P.,
QDA, Logistic R., D. Tree, SVM, N. Bayes and N. N. represent Neural
Network, Gaussian Process, Quadratic Discriminant Analysis, Logistic
Regression, Decision Tree, Support Vector Machine, Naïve Bayes, and
Nearest Neighbours, respectively. The same abbreviations are used in
the following sections.

The training and testing accuracy of K Nearest Neighbors model,
which works best among all conventional approaches, on each of the 10
folds of data is illustrated using blue bars and green bars respectively in
Fig. 9.

3.2.2. Evaluation of ensemble methods
Ensemble methods including Random Forests, Ada Boost, and

Gradient Tree Boosting are tested on the experimental dataset. These
methods are adjusted to achieve their best performance. 10-fold stra-
tified cross validation is applied to all the classifiers. The average ac-
curacy of conventional models on testing data is shown in Table 5.
Random Forest works the best among all the ensemble methods with a
testing accuracy of 83.02%.

The overall performance of all ensemble methods on each fold of the
dataset is shown in Fig. 10. The error bars depict the mean and varia-
tion of training and testing accuracy for each model on all the 10 folds
of data. The blue bars show the training accuracy and the green bars
denote the testing accuracy. On the x axis, G. Boosting, R. Forest, and
AdaB. denote Gradient Boosting, Random Forest, and Ada Boost, re-
spectively. The same abbreviations are implemented in the following
sections.

Table 3
Results of ensemble methods trained on synthetic dataset.

Models Testing accuracy

Random Forest 0.52
Ada Boost 0.56
Gradient Boosting 0.54

Fig. 7. Comparison of conventional methods, ensemble approaches and
Siamese Network trained using synthetic dataset.

Table 4
Results of conventional methods on experimental dataset.

Models Testing accuracy

K Nearest Neighbours 0.86
QDA 0.75
Gaussian Process 0.85
Logistic Regression 0.72
NaïveBayes 0.61
Decision Tree 0.81
SVM 0.83
NeuralNetwork 0.82
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The training and testing accuracy of Random Forest model, which
performs the best among the ensemble models, on each of the 10 folds
of data is illustrated in Fig. 11 using blue bars and green bars respec-
tively.

3.2.3. Evaluation of siamese network
Siamese Network is also evaluated on the same experimental da-

taset. 10-fold stratified cross validation is also implemented. The
training and testing accuracy of Siamese Network on each of the 10
folds of data is plotted in Fig. 12 using blue bars and green bars, re-
spectively. The average training accuracy is 90.17% and the testing
accuracy is 88.42%.

3.2.4. Overall comparison of models trained using experimental dataset
To make a better comparison, K Nearest Neighbors model, which

works best among all conventional approaches, is selected as the re-
presentative of conventional models. Random Forest is picked on behalf
of ensemble methods. Their training and testing accuracy are compared
with Siamese Network and the comparison is shown in Fig. 13. Siamese
Network outperforms all the other mentioned approaches. It is verified
that the trained model can be used for predicting the outcome of future
trials to guide the design of experiments.

3.3. Printing speed optimization

The learned machine learning models in Section 3.2 can more ac-
curately predict whether the printing speed is appropriate to print a
part continuously. However, the surface quality of the printed parts
varies with the continuous printing speed. the printed surface is much
coarser if the filling resin is rapid when a higher continuous elevation

Fig. 8. Overall performance of all conventional techniques.

Fig. 9. Training and testing accuracy of K Nearest Neighbors model on all the
10 folds of data.

Table 5
Results of ensemble methods trained on synthetic dataset.

Models Testing accuracy

Random Forest 0.83
Ada Boost 0.82
Gradient Boosting 0.80

Fig. 10. Overall performance of ensemble methods.

Fig. 11. Training and testing accuracy of Random Forest on all the 10 folds of
data.
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speed is used. A tradeoff between the printing speed and the printed
surface quality needs to be made. This section investigates the appli-
cation of machine learning models on identifying the optimum con-
tinuous printing speed that can produce an acceptable surface quality.

3.3.1. Data collection
To collect data, squares with the same area while different aspect

ratios are continuously printed using different continuous elevation
speed. The data is labeled 0 if the printing fails. The successfully printed
parts are observed under microscope to check the surface quality. Since
there are only a few optimum speeds for each geometry, to avoid un-
balanced data, the printing with an optimum speed is labeled 3 and the
rest unlabeled data are rated 1 or 2 by concerning both the surface
quality and manufacturing speed. Microscopic images of some surface

of printed samples are shown in Fig. 14. The average size of the pores
on the printing surface is used as the surface quality evaluation metric.
In this example, Fig. 14 (b) is graded as 3, (a) and (c) are rated to be 2
and (d) is marked as 1. Therefore, there are four classes in the dataset
and the task becomes more challenging than previous. Due to the high
cost and time-consuming characteristics of continuous printing ex-
periments, limited data (˜80) is collected.

3.3.2. Evaluation of conventional techniques on optimizing printing speed
Conventional approaches including K Nearest Neighbors (KNN),

Support Vector Machine (SVM), Decision Tree, Logistic Regression,
Gaussian Processes (GP) and Neural Network are tested on the dataset.
To avoid overfitting, 10-fold stratified cross validation is utilized. The
average accuracy of conventional models on testing data is shown in
Table 6. Nearest Neighbours works the best among all the conventional
techniques with a testing accuracy of 59%.

The overall performance of all conventional techniques on each fold
of the dataset is shown in Fig. 15. The error bars depict the mean and
variation of training and testing accuracy for each model on all the 10
folds of data. The blue bars show the training accuracy and the green
bars the testing accuracy.

The training and testing accuracy of Nearest Neighbours model on
each of the 10 folds of data is plotted in Fig. 16 using blue bars and
green bars, respectively.

3.3.3. Evaluation of ensemble methods on optimizing printing speed
Ensemble methods are also tested for optimizing the printing speed.

The settings of these methods are modified to achieve the best accuracy.
10-fold stratified cross validation is applied to all the classifiers. The
average accuracy of ensemble methods on testing data is shown in
Table 7. Random Forest works the best among all the ensemble methods
with a testing accuracy of 73%.

The overall performance of all ensemble methods on all 10 folds of
the dataset is shown in Fig. 17. The error bars depict the mean and
variation of training and testing accuracy for each model on all the 10

Fig. 12. Training and testing accuracy of Siamese Network on all the 10 folds of data.

Fig. 13. Overall comparison of the models on experimental data. (b)
V=0.0125mm/s (b) V= 0.01875mm/s (c) V= 0.025mm/s (d)
V=0.03125mm/s.

Fig. 14. Microscopic images of surface of printed 2mm x 8mm square.
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folds of data. The blue bars show the training accuracy and the green
bars denote the testing accuracy.

The training and testing accuracy of Random Forest model, which
performs the best among the ensemble models, on each of the 10 folds
of data is plotted in Fig. 18 using blue bars and green bars, respectively.

3.3.4. Evaluation of siamese networks on optimizing printing speed
Siamese Network is evaluated on the same experimental dataset,

with a 10-fold stratified cross validation. The related training and
testing accuracy on each of the 10 folds of data is plotted in Fig. 19
using blue bars and green bars, respectively. The average training ac-
curacy is 80.14% and the testing accuracy is 82.67%, which outper-
forms all above mentioned approaches. Thus, it is also verified that
Siamese Networks is effective on optimizing printing speed.

3.3.5. Overall comparison of models for speed optimization
A comparison of conventional models (Decision Tree is used as a

representative), ensemble methods (Gradient Boosting is selected as a
representative), and Siamese Network for printing speed optimization is
shown in Fig. 20. Siamese Network exceeds all the other approaches.
The overall relatively low accuracy may due to the small size of the
dataset. Nonetheless, the Siamese Network performs the best and shows
a great potential for predicting the outcome of future trials to guide the
design of printing jobs.

4. Conclusions

This paper investigates the application of machine learning models
in predicting feasible printing speed for CLIP process. Conventional
techniques, ensemble approaches, and the state of the art Siamese
Networks are investigated and compared. Siamese Network works the
best among all the investigated models. It can effectively extract useful
information from mathematical model generated synthetic dataset.
Given an experimental dataset, Siamese Network can more accurately
classify the data and give relatively more reliable guidance for future
experimental design, compared to all other models. Experimental

Table 6
Results of conventional methods on optimizing printing speed.

Models Testing accuracy

Nearest Neighbours 0.59
Gaussian Process 0.53
Logistic Regression 0.46
NaiveBayes 0.53
Decision Tree 0.46
SVM 0.50
NeuralNet 0.49

Fig. 15. Overall performance of all conventional techniques.

Fig. 16. Training and testing accuracy of K Nearest Neighbors model on all the
10 folds of data.

Table 7
Results of ensemble methods trained on synthetic dataset.

Models Testing accuracy

Random Forest 0.73
Ada Boost 0.60
Gradient Boosting 0.68

Fig. 17. Overall performance of ensemble methods.
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results also validated that Siamese Network is more effective on cap-
turing features for identifying the optimum manufacturing speed. With
the help of Siamese Network, a dynamically growing dataset for con-
tinuous printing can be enriched effectively, and the continuous
printing process can be planned efficiently. The effectiveness of Siamese

Network has first been validated in continuous printing process plan-
ning. Due to its capability of dealing with small dataset, Siamese net-
work can also be extended to other additive manufacturing systems or
some general manufacturing systems.
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